Строительная доска объявлений - BENT.RU
Cтроительный портал BENT. Проектирование, гражданское и промышленное строительcтво. Проектирование зданий.

Добавить объявление
Строительные объявления Строительная документация Статьи по строительству Строительный портал

4. ОТВЕРДИТЕЛИ ДЛЯ ЖСС И ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ САМОЗАТВЕРДЕВАНИЯ СМЕСЕЙ

  [Раздел: Жидкие самотвердеющие смеси]

1. САМОТВЕРДЕЮЩИЕ КОМПОЗИЦИИ НА ОСНОВЕ ЖИДКОГО СТЕКЛА

Свойства жидкого стекла

Свойства водных растворов силикатов щелочных металлов и их способность вступать в физико-химическое взаимодействие с различными веществами в большой мере определяются свойствами безводных силикатов — силикатных стекол. Безводные силикаты щелочных металлов изучены значительно лучше, чем их водные растворы. Существует несколько гипотез о строении силикатных стекол.

Все гипотезы допускают наличие в стекле высокополимерного, апериодического, но не лишенного отдельных упорядоченных микрообластей каркаса, приближающих стекло к кристаллической структуре.

Различные точки зрения по вопросу внутреннего строения кремнеземистого стекла могут быть сведены к двум важнейшим: к теории пространственной сетки Захариазена и цепочечной гипотезе Сосмэна — Тарасова. По мнению большинства исследователей, расхождения между этими представлениями носят больше качественный, чем количественный характер. Строение стекол лучше описывается той или иной теорией в зависимости от их состава и сложности.

Согласно современным представлениям стекла щелочных силикатов являются частным случаем рассмотренных систем. Они состоят из кремнекислородных комплексов, несущих отрицательный заряд, степень сложности и разветвленности которых может быть различной, и катионов металлов (Na+, К+ и т. д.). Для этих стекол характерно наличие связи двух типов: ионно-ковалентной (связь Si—О) и ионной (Me—О). Как показало изучение строения ряда силикатов, при большом содержании щелочных окислов силикаты состоят из щелочных или слоистых радикалов — Si—О—Si, сшитых катионами щелочного окисла. В этом случае свойства стекол будут определяться ионной связью. При малом содержании щелочных окислов образуются каркасные (непрерывные) структуры, а свойства стекол будут определяться ионно-ковалентной связью.

Детальным изучением диаграммы состояния бинарной системы Na2О—SiО2 установлено существование трех определенных силикатов натрия: 2Na2О•SiО2, Na2О•Si02 и Na2О•2SiО2. По данным П. Н. Григорьева и М. А. Матвеева, к числу индивидуальных кристаллических силикатов натрия, обнаруживаемых современными методами, относится также трисиликат натрия Na2О•3SiО2. Растворимость силикатов натрия в воде ухудшается по мере увеличения их модуля.

По представлениям С. К. Дуброво и О. А. Шмидт, процесс взаимодействия силикатов натрия с водой и их растворение протекают в две стадии. На первой стадии происходит обмен ионов натрия стекла на ионы водорода раствора, вследствие чего на поверхности образуется слой кремневой кислоты, составляющей вместе с кремнеземом исходного стекла защитный слой на его поверхности. На второй стадии происходит взаимодействие защитного слоя с образовавшимся щелочным раствором, вызывающее растворение кремневой кислоты на поверхности.

Было установлено, что при взаимодействии силикатов натрия с водой вся переходящая в раствор кремневая кислота находится в молекулярной степени дисперсности. При этом, по мнению М. А. Матвеева, стеклообразные щелочные силикаты переходят в раствор, не гидролизуясь, и диссоциируют в растворе на комплексные гидратированные ионы щелочного металла и кремнекислородные анионы.

Система Na2О—SiО2—Н2О была изучена в интервале температур 10—450° С. При постепенном выпаривании водных растворов метасиликата натрия, по данным Р. Айлера и Ю. Вейла, могут быть выкристаллизованы гидратированные метасиликаты различных типов, например Na2SiО3•5H2О; Na2SiО3•6H2О; Na2SiО3•8H2О и Na2SiО3•9H2О, с температурами плавления соответственно 72,2; 62,85; 48,35 и 47,85° С. Они очень хорошо растворимы в воде и имеют кристаллический характер.

Растворы силикатов натрия в воде изучали многие исследователи, однако их строение до настоящего времени выяснено недостаточно. Чаще всего жидкие стекла рассматривают как лиофильные коллоидные системы. Так как взгляды на строение лиофильных коллоидных систем в последнее время сильно изменились, то и представления о строении жидких стекол в известной мере устарели. Еще несколько десятилетий назад лиофильные коллоиды считались гетерогенными неравновесными системами, а теперь всеми признаются за истинные равновесные растворы полимеров [16].

Последние представления о полимерном строении неорганических стекол вообще и щелочно-силикатных стекол, в частности, дают основание рассматривать жидкие стекла как растворы неорганических полимеров. Свойства их определяются подвижностью и гидратацией катионов щелочного металла и разветвленностью полимерных кремнекислородных анионов. От настоящих полимеров органического происхождения стекла отличаются тем, что их полимерная часть (каркас) имеет характер высокополимерного анионного радикала. М. А. Матвеев и А. И. Рабухин отмечают, что особенностью силикатных и других стекол является то, что у них анион полимеризован, а катион мономерен. Э. Тило указывает, что для неорганических полимеров специфичным является наличие не полимерных молекул, а полимерных ионов. А. И. Рабухин, изучавший физико-химические свойства жидких стекол, указывает на двойственность их природы. По зависимости плотности жидких стекол от их состава, по сжимаемости, показателям преломления и отчасти эквивалентной электропроводности они ведут себя как водные растворы электролитов, а по свойствам вязкости, резко возрастающей с концентрацией, — как растворы полимеров.

Степень диссоциации силикатов в водных растворах невелика. Причина этого состоит в том, что свободный заряд полимерных анионов может возрасти настолько, что оставшиеся катионы чисто электростатически препятствуют диссоциации.

Жидкое стекло обладает высокой реакционной способностью. Как отмечается в специальной литературе, веществ, не реагирующих с жидким стеклом, известно меньше, чем веществ, вступающих с ним во взаимодействие.

Взаимодействие жидкого стекла с кислотами

Так как силикаты натрия являются солями очень слабой кремневой кислоты, последняя должна вытесняться из этих солей всеми растворимыми в воде неорганическими и органическими кислотами. При этом образуется гель кремневой кислоты, обладающий вяжущими свойствами. Приводим схему одной из таких реакций (по данным П. Н. Григорьева и М. А. Матвеева):

По нашим данным, большинство кислот очень энергично взаимодействует с жидким стеклом, образуя хлопьевидные осадки — кремнегель. Твердение с индукционным периодом происходит только при большом разбавлении стекла (до плотности 1,1) и низкой концентрации кислот (10—20%), однако образующийся при этом гель малопрочен.

Ряд соединений (АlСl3, Fe2(SО4)3, Al2(SО4)3, Na23 и др.) подвергается гидролизу с образованием соответствующей кислоты, вступающей затем во взаимодействие с жидким стеклом (случай двухступенчатой реакции), но все они по тем или иным причинам не могут быть использованы для отверждения жидкого стекла.

Взаимодействие с кремнефтористоводородной кислотой. Кремнефтористоводородная кислота является сильной двухосновной кислотой и относится к числу комплексных соединений. В водном растворе подвергается диссоциации и гидролизу в несколько последовательных стадий. В больших количествах H2SiF6 получают в технике поглощением водой SiF4, являющегося побочным продуктом производства суперфосфата и фосфорной кислоты. Это очень дешевый материал, сырьевые ресурсы которого неограниченны.

Условно состав раствора H2SiF6, по данным И. Г. Рысс, можно представить как смесь HF, SiF4 и Н2О.

В водном растворе HF диссоциирует:

Положение равновесия этой реакции смещается вправо вследствие связывания ионов фтора в относительно прочный комплексный ион SiF''6:

Фтористый кремний подвергается гидролизу:

Свойства водного раствора будут определяться условиями равновесия этих основных реакций. В щелочном растворе часть кислоты нейтрализуется мгновенно, а затем наступает протекающий во времени процесс разложения SiF''6 по уравнению

При взаимодействии кремнефтористоводородной кислоты с жидким стеклом скорость реакции, по-видимому, определяется разложением SiF''6 и последующим гидролизом SiF4, в процессе которого образуются кремнегель и плавиковая кислота HF, реагирующая затем с силикатом натрия.

Условно в общем виде реакцию химического взаимодействия между H2SiF6 и жидким стеклом различного модуля можно записать следующим образом:

для одномодульного стекла

для двухмодульного стекла

Образующаяся в процессе реакции ортокремневая кислота выделяется в виде геля, вызывая затвердевание смеси. Кремний, входящий в состав H2SiF6, участвует в образовании дополнительных молекул ортокремневой кислоты, повышающих связующую способность системы. В качестве отвердителя применяли кремнефтористоводородную кислоту 8%-ной концентрации. В таком виде она чаще всего поставляется потребителям. Экспериментальные данные по продолжительности гелеобразования композиций жидкое стекло — H2SiF6 при разной плотности жидкого стекла и переменном количестве кислоты приведены на рис. 28.

Весьма важной и интересной особенностью кремнефтористоводородной кислоты является ее способность вызывать геле- образование в концентрированных растворах жидкого стекла с регулируемым индукционным периодом, причем до наступления момента коагуляции физические свойства раствора, в частности его вязкость, остаются практически неизменными. С повышением плотности жидкого стекла продолжительность гелеобразования возрастает. Прочность образующегося геля высока, но она уменьшается с понижением плотности жидкого стекла и повышением содержания кислоты.

Составы и свойства ЖСС с кремнефтористоводородной кислотой приведены в гл. 5.

Соли кремнефтористоводородной кислоты — фторосиликаты также отверждают жидкое стекло, взаимодействуя с ним по тем же схемам (7), (8). Примером этой группы соединения является кремнефтористый натрий Na2SiF6. Он находит применение в строительной промышленности для получения самотвердеющих кислотоупорных цементов на основе жидкого стекла [61] и может использоваться для приготовления самотвердеющих формовочных смесей на жидком стекле.

Взаимодействие жидкого стекла с гидроокисями щелочноземельных металлов и силикатами кальция

По данным П. Н. Григорьева и М. А. Матвеева, жидкое стекло легко и быстро реагирует с гидроокисями щелочноземельных металлов с образованием гелеобразных продуктов реакции.

Реакция, например, гидроокиси бария с жидким стеклом протекает по следующей схеме:

Эти же авторы отмечают, что аналогично идет реакция жидкого стекла с гидроокисями других щелочноземельных металлов:

Здесь также необходимо рассмотреть возможность двухстадийного протекания реакции между жидким стеклом и веществами, образующими в водной среде гидроокиси щелочноземельных металлов.

Из строительной практики известна способность трехкальциевого и двухкальциевого силикатов, являющихся минералогическими составляющими портландцемента, подвергаться гидролизу при достаточном количестве воды с образованием Са(ОН)2 и различных гидросиликатов кальция в процессе твердения цемента.

Приводим схему реакций гидролиза трехкальциевого и двухкальциевого силиката по данным работы и В. Ф. Журавлева:

Обе реакции гидролиза протекают медленно, особенно вторая.

Большое количество двухкальциевого силиката (более 50%) содержится в саморассыпающихся шлаках феррохромового производства, а также в отходах, получающихся при производстве глинозема из нефелиновых руд, так называемых нефелиновых шламах. В связи с этим нами были изучены чистые синтезированные 3CaO•SiO2 и (β-2CaO•SiO2, портландцемент, содержащий эти соединения в больших количествах, а также феррохромовый шлак и нефелиновый шлам, в состав которых входит двухкальциевый силикат. Материалы размалывали до примерно равной удельной поверхности (удельная поверхность C3S была равна 3200 см2/г, удельная поверхность β-C2S — 3400 см2/г). Дисперсность феррохромового шлака и нефелинового шлама была близкой к дисперсности остальных материалов: удельная поверхность шлака (домолотого) составляла 3100 см2/г; а нефелинового шлама — 3000 см2/г. Диаграммы твердения композиций, состоящих из жидкого стекла (М = 2,9 и М = 2,4, ρ = 1,48 г/см3) и образных отвердителей, взятых в соотношении 1 : 1 (по массе) представлены на рис. 29.

При модуле 2,9 композиции с трехкальциевым силикатом (C3S) твердеют мгновенно в процессе их приготовления. Поэтому кривая твердения для C3S на рис. 29, а не приведена. Двухкальциевый силикат β-модификации, нефелиновый шлам и феррохромовый шлак твердеют с жидким стеклом при наличии хорошо выраженного индукционного периода. Затвердевшие композиции имели однородный вид и достаточно высокую прочность. При замешивании портландцемента с жидким стеклом модуля 2,9 сразу же наблюдается частичное схватывание массы с образованием комочков. Индукционный период твердения отсутствует. Дальнейшее затвердевание композиции протекает очень медленно. Такой характер твердения объясняется, по-видимому, разнородностью состава портландцемента: одни минералогические составляющие (такие, как трехкальциевый силикат, алюминаты кальция) реагируют с жидким стеклом очень быстро, другие — медленно.

ЖИДКИЕ САМОТВЕРДЕЮЩИЕ СМЕСИ
П.А. БОРСУК, А.М. ЛЯСС
МОСКВА, 1979

  « 1 [2] 3 4 5 6 7 8 9 »




Статьи |  Фотогалерея |  Обратная связь

© 2006-2025 Bent.ru
Бесплатная строительная доска объявлений. Найти, дать строительное объявление.
Москва: строительство и стройматериалы.